Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Support Care Cancer ; 31(6): 350, 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20231187

ABSTRACT

PURPOSE: CAR-T programs will burden increasingly on healthcare systems, since the implementation of these therapies involves: multidisciplinary team collaboration, post-infusion hospitalization with risk of life-threatening toxicities, frequent in hospital visits and prolonged follow-up which heavily influence patients' quality of life. In this review we propose an innovative, telehealth-based, model for monitoring CAR-T patients: this method was used for managing a case of COVID-19 infection occurred two weeks after CAR-T cell infusion. METHODS: Several benefits for management of all these aspects of CAR-T programs could be made using telemedicine: for example, telemedicine real-time clinical monitoring could reduce the COVID-19 contagion risks for CAR-T patients. RESULTS: Our experience confirmed feasibility and utility of this approach in a real-life case. We believe that use of telemedicine for CAR-T patients could improve: the logistics of toxicity monitoring (frequent vital sign checks and neurologic assessments), the multidisciplinary team communication (patient selection, specialists consulting, coordination with pharmacists, etc.), the decrease in hospitalization time and the reduction of ambulatory visits. CONCLUSIONS: This approach will be fundamental for future CAR-T cell program development, enhancing patients' quality of life and cost-effectiveness for healthcare systems.


Subject(s)
COVID-19 , Receptors, Chimeric Antigen , Telemedicine , Humans , Pandemics/prevention & control , Quality of Life , Cell- and Tissue-Based Therapy
2.
Front Immunol ; 13: 892331, 2022.
Article in English | MEDLINE | ID: covidwho-2141899

ABSTRACT

Introduction: In immunocompromised patients, SARS-CoV-2 mRNA vaccine has been used in Italy from the beginning of the vaccination campaign, but several studies have shown that the serological response of onco-hematological patients was reduced compared to healthy subjects, due to the state of immunosuppression because of both underlying disease and administered therapy. Methods: We evaluated the association of anti-SARS-CoV-2 spike IgG titers in 215 hematological patients with clinical and demographic variables to verify if it was possible to identify predictive parameters of serological response, as well as using a control group, consisting of healthy health workers of San Carlo Hospital in Potenza. Anti-SARS-CoV2 IgG titers were evaluated after 30-45 days post second dose vaccine using chemiluminescent microparticle immunoassay technology. Results: Patients with hematological malignancies, compared with the control arm, had both a mean concentration of anti-SARS-CoV-2 IgG significantly lower and a seroconversion rate numerically lower. All chronic lymphatic leukemia patients showed levels of antibody titer below the mean concentration, also in only clinical surveillance patients. Comparing serological response in hematological malignancies, only acute leukemia patients who were off therapy had the highest seroconversion rate among the patients' cohorts and a mean antibody concentration greater than the control arm. Patients treated with steroids and rituximab showed a lower level of anti-SARS-CoV-2 spike IgG. Differences in anti-spike IgG levels among chronic myeloid leukemia patients stratified according to tyrosine kinase inhibitor therapy and molecular response were observed, and they could have interesting implications on the evaluation of the effects of these drugs on the immune system, but having not reached statistical significance at the moment. The cohort of patients who received a stem cell transplant was very heterogeneous because it included different hematological malignancies and different types of transplant; however, a mean concentration of anti-SARS-CoV2 IgG greater than the control arm was reported. Indeed, among patients who performed a transplant for over 6 months only one had a spike IgG concentration below the cutoff. Conclusions: Our data confirm reduced serological response in hematological patients after anti-SARS-CoV-2 vaccination. However, we found a great diversity of SARS-CoV-2 antibody response according to types of pathologies and therapies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Hematologic Neoplasms/therapy , Humans , Immunoglobulin G , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
3.
Tech Innov Patient Support Radiat Oncol ; 24: 32-39, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2042160

ABSTRACT

Background and purpose: In this study we want to evaluate the efficacy of yoga practice on dysfunctional stress, inflammation and QOL in breast cancer patients undergoing adjuvant radiotherapy. Patients and methods: Patients with stage 0 to III breast cancer were recruited before starting radiotherapy (XRT) and were randomly assigned to yoga group (YG) two times a week during XRT or control group (CG). Self-report measures of QOL, fatigue and sleep quality, and blood samples were collected at day 1 of treatment, day 15, end of treatment and 1, 3 and 6 months later. Cortisol blood level, IL6, IL10, IL1RA, TNFα and lymphocyte-to-monocyte ratio were analyzed as measures of dysfunctional stress and inflammation. Results: Patients started XRT and yoga classes in October 2019. Due to COVID-19 pandemic we closed the enrollment in March 2020. We analysed 24 patients, 12 YG and 12 CG. The analysis of blood cortisol levels revealed an interaction (p = 0.04) between yoga practice and time, in particular YG had lower cortisol levels at the end of XRT respect to CG (p-adj = 0.02). The analysis of IL-1RA revealed an interaction effect (p = 0.04) suggesting differences between groups at some time points that post-hoc tests were not able to detect. Conclusions: To our knowledge, this is the first study to evaluate the effects of yoga in a cancer population studying inflammation markers, cortisol trend and QOL during and until 6 months after XRT. This study suggests that yoga practice is able to reduce stress and inflammation levels over time. Besides including a larger number of patients to increase the power, future studies should consider other inflammatory or pro inflammatory factors and long-term yoga program to gain more evidence on yoga practice benefits.

4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1999247

ABSTRACT

Introduction In immunocompromised patients, SARS-CoV-2 mRNA vaccine has been used in Italy from the beginning of the vaccination campaign, but several studies have shown that the serological response of onco-hematological patients was reduced compared to healthy subjects, due to the state of immunosuppression because of both underlying disease and administered therapy. Methods We evaluated the association of anti-SARS-CoV-2 spike IgG titers in 215 hematological patients with clinical and demographic variables to verify if it was possible to identify predictive parameters of serological response, as well as using a control group, consisting of healthy health workers of San Carlo Hospital in Potenza. Anti-SARS-CoV2 IgG titers were evaluated after 30–45 days post second dose vaccine using chemiluminescent microparticle immunoassay technology. Results Patients with hematological malignancies, compared with the control arm, had both a mean concentration of anti-SARS-CoV-2 IgG significantly lower and a seroconversion rate numerically lower. All chronic lymphatic leukemia patients showed levels of antibody titer below the mean concentration, also in only clinical surveillance patients. Comparing serological response in hematological malignancies, only acute leukemia patients who were off therapy had the highest seroconversion rate among the patients’ cohorts and a mean antibody concentration greater than the control arm. Patients treated with steroids and rituximab showed a lower level of anti-SARS-CoV-2 spike IgG. Differences in anti-spike IgG levels among chronic myeloid leukemia patients stratified according to tyrosine kinase inhibitor therapy and molecular response were observed, and they could have interesting implications on the evaluation of the effects of these drugs on the immune system, but having not reached statistical significance at the moment. The cohort of patients who received a stem cell transplant was very heterogeneous because it included different hematological malignancies and different types of transplant;however, a mean concentration of anti-SARS-CoV2 IgG greater than the control arm was reported. Indeed, among patients who performed a transplant for over 6 months only one had a spike IgG concentration below the cutoff. Conclusions Our data confirm reduced serological response in hematological patients after anti-SARS-CoV-2 vaccination. However, we found a great diversity of SARS-CoV-2 antibody response according to types of pathologies and therapies.

5.
Cancers (Basel) ; 13(22)2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1533799

ABSTRACT

Association of blinatumomab treatment with myelosuppression was examined in this study. Peripheral blood counts were assessed prior to, during, and after blinatumomab treatment in patients with relapsed/refractory Philadelphia chromosome-negative (Ph-) B-cell precursor (BCP) acute lymphoblastic leukemia (ALL; n = 267) and Ph+ BCP-ALL (n = 45) from the TOWER and ALCANTARA studies, respectively, or chemotherapy in patients with Ph- BCP-ALL (n = 109) from the TOWER study; all the patients with relapsed/refractory BCP-ALL and responders achieving complete remission (CR) or CR with partial/incomplete hematological recovery (CRh/CRi) were evaluated. Event-free survival (EFS) and overall survival (OS) were assessed in patients achieving CR and CRh/CRi. Median leukocyte, neutrophil, and platelet counts increased during two blinatumomab cycles but remained low longer after chemotherapy. Among the responders, there was a trend that a greater proportion of patients achieved CR with blinatumomab (Ph-, 76.5%; Ph+, 77.8%) versus with chemotherapy (Ph-, 63.6%). In the TOWER study, the survival prognosis for patients achieving CRh/CRi versus CR with blinatumomab was more similar (median OS, 11.9 (95% CI, 3.9-not estimable (NE)) vs. 15.0 (95% CI, 10.4-NE) months, p = 0.062) than with chemotherapy (5.2 (95% CI, 1.6-NE) vs. 18.9 (95% CI, 9.3-NE) months, p = 0.013). Blinatumomab treatment, with only temporary and transient myelosuppression, resulted in a greater survival benefit than chemotherapy.

7.
Sensors (Basel) ; 21(11)2021 May 30.
Article in English | MEDLINE | ID: covidwho-1256635

ABSTRACT

During the COVID-19 pandemic, there has been a significant increase in the use of non-contact infrared devices for screening the body temperatures of people at the entrances of hospitals, airports, train stations, churches, schools, shops, sports centres, offices, and public places in general. The strong correlation between a high body temperature and SARS-CoV-2 infection has motivated the governments of several countries to restrict access to public indoor places simply based on a person's body temperature. Negating/allowing entrance to a public place can have a strong impact on people. For example, a cancer patient could be refused access to a cancer centre because of an incorrect high temperature measurement. On the other hand, underestimating an individual's body temperature may allow infected patients to enter indoor public places where it is much easier for the virus to spread to other people. Accordingly, during the COVID-19 pandemic, the reliability of body temperature measurements has become fundamental. In particular, a debated issue is the reliability of remote temperature measurements, especially when these are aimed at identifying in a quick and reliable way infected subjects. Working distance, body-device angle, and light conditions and many other metrological and subjective issues significantly affect the data acquired via common contactless infrared point thermometers, making the acquisition of reliable measurements at the entrance to public places a challenging task. The main objective of this work is to sensitize the community to the typical incorrect uses of infrared point thermometers, as well as the resulting drifts in measurements of body temperature. Using several commercial contactless infrared point thermometers, we performed four different experiments to simulate common scenarios in a triage emergency room. In the first experiment, we acquired several measurements for each thermometer without measuring the working distance or angle of inclination to show that, for some instruments, the values obtained can differ by 1 °C. In the second and third experiments, we analysed the impacts of the working distance and angle of inclination of the thermometers, respectively, to prove that only a few cm/degrees can cause drifts higher than 1 °C. Finally, in the fourth experiment, we showed that the light in the environment can also cause changes in temperature up to 0.5 °C. Ultimately, in this study, we quantitatively demonstrated that the working distance, angle of inclination, and light conditions can strongly impact temperature measurements, which could invalidate the screening results.


Subject(s)
COVID-19 , Thermometers , Body Temperature , Humans , Infrared Rays , Pandemics , Reproducibility of Results , SARS-CoV-2
8.
BMC Med Res Methodol ; 21(1): 91, 2021 04 30.
Article in English | MEDLINE | ID: covidwho-1208633

ABSTRACT

BACKGROUND: During the COVID-19 emergency, IRST IRCCS, an Italian cancer research institute and promoter of no profit clinical studies, adapted its activities and procedures as per European and national guidelines to maintain a high standard of clinical trials, uphold participant safety and guarantee the robustness and reliability of the data collected. This study presents the measures adopted by our institute with the aim of providing information that could be useful to other academic centers promoting clinical trials during the pandemic. MAIN TEXT: After an in-depth analysis of European and Italian guidelines and consultation and analysis of publications regarding the actions implemented by international no profit clinical trial promoters during the emergency, we monitored the way in which the institute managed clinical trials, verifying compliance with regulatory guidelines and clinical procedures, and evaluating screening and recruitment trends in studies. During the pandemic, our center activated a new clinical trial for the treatment of patients with COVID-19. A number of procedural changes in clinical trials were also authorized through notified amendments, in accordance with Italian Medicines Agency (AIFA) guidelines. Patient screening and enrolment was not interrupted in any site participating in multicenter interventional clinical trials on drugs. The institute provided clear indications about essential procedures to be followed, identifying those that could be postponed or carried out by telephone/teleconference. All external sites were monitored remotely, avoiding on-site visits. Although home-working was encouraged, the presence of staff in the central office was also guaranteed to ensure the continuity of promoter activities. CONCLUSIONS: Some measures adopted by IRST could also be effective outside of the COVID-19 period, e.g. numerous activities relating to clinical trial management could be performed on a home-working basis, using suitable digital technologies. In the future, electronic medical records and shared guidelines will be essential for the correct identification and management of trial risks, including the protection of the rights and privacy of subjects taking part. Promoter supervision could be increased by implementing centralized monitoring tools to guarantee data quality. Closer collaboration between promoters and local study staff is needed to optimize trial management.


Subject(s)
COVID-19 , Data Accuracy , Humans , Pandemics , Reproducibility of Results , SARS-CoV-2
9.
Epidemiol Prev ; 45(1-2): 28-36, 2021.
Article in English | MEDLINE | ID: covidwho-1197715

ABSTRACT

OBJECTIVES: to examine the factors that, in the context of the current pandemic, have influenced the conduct of a randomized clinical trial on hydroxychloroquine in Italy. DESIGN: the trend of enrolment in the PROTECT study, "A randomized study with Hydroxychloroquine versus observational support for prevention or early phase treatment of Coronavirus disease (COVID-19)" (Eudract number: 2020-001501-24, NCT04363827), conducted in the period from May to September 2020, was analysed to evaluate the possible association of the enrolment rate with the amount of information published in the national and local press on hydroxychloroquine. SETTING AND PARTICIPANTS: the PROTECT clinical study is an Italian interventional superiority study, open label, with cluster randomization, aimed at evaluating whether treatment with hydroxychloroquine can reduce the percentage of symptomatic subjects compared to observation only in a population of subjects exposed to SARS-CoV-2 virus consisting of cohabitants/contacts of COVID-19 patients and asymptomatic or paucisymptomatic subjects diagnosed with COVID-19. MAIN OUTCOME MEASURES: the number of asymptomatic or paucisymptomatic COVID-19 patients and the number of contacts/cohabitants of COVID-19 patients enrolled in the Protect study from May to September 2020. RESULTS: from May to September 2020, the number of patients diagnosed with COVID-19 enrolled in the PROTECT clinical trial showed a decrease consistent with the number of news on hydroxychloroquine appearing in the national and local press, starting from the time when the first criticisms of the efficacy of hydroxychloroquine were made known; the number of contacts/cohabitants of COVID-19 patients showed a more marked and more timely decrease. CONCLUSIONS: in the context determined by the current COVID-19 pandemic, conducting a controlled clinical trial is strongly influenced by public opinion on scientific issues. Adherence to a clinical study can become highly problematic and invalidate the possibility of answering a scientific question and the validity of a project. In the current pandemic situation, randomized controlled trials may not always be the optimal tool to reach the expected scientific evidence, due to a number of problems. It is preferable to use a sequential or adaptive design. Furthermore, study protocols should implement innovative approaches that also include the involvement of participants in the decision-making process. In any case, the influence of public information on scientific issues is an extremely important factor to consider in the design of clinical trials in exceptional situations such as a pandemic.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Hydroxychloroquine , COVID-19/epidemiology , Humans , Hydroxychloroquine/therapeutic use , Italy/epidemiology
10.
Cell Transplant ; 30: 963689721991477, 2021.
Article in English | MEDLINE | ID: covidwho-1058182

ABSTRACT

TRANSLATIONAL RELEVANCE: No prophylactic treatments for COVID-19 have been clearly proven and found. In this pandemic context, cancer patients constitute a particularly fragile population that would benefit the best from such treatments, a present unmet need. TMPRSS2 is essential for COVID-19 replication cycle and it is under androgen control. Estrogen and androgen receptor dependent cues converge on TMPRSS2 regulation through different mechanisms of action that can be blocked by the use of hormonal therapies. We believe that there is enough body of evidence to foresee a prophylactic use of hormonal therapies against COVID-19 and this hypothesis can be easily tested on cohorts of breast and prostate cancer patients who follow those regimens. In case of pandemic, if the protective effect of hormonal therapies will be proven on cancer patients, the use of specific hormonal therapies could be extended to other oncological groups and to healthy individuals to decrease the overall risk of infection by SARS-CoV-2.Given the COVID-19 coronavirus emergency, a special focus is needed on the impact of this rapidly spreading viral infection on cancer patients. Androgen receptor (AR) signaling in the transmembrane protease serine 2 (TMPRSS2) regulation is emerging as an important determinant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility. In our study, we analyzed AR and TMPRSS2 expression in 17,352 normal and 9,556 cancer tissues from public repositories and stratified data according to sex and age. The emerging picture is that some patient groups may be particularly susceptible to SARS-CoV-2 infection and may benefit from antiandrogen- or tamoxifen-based therapies. These findings are relevant to choose proper treatments in order to protect cancer patients from concomitant SARS-CoV-2 contagion and related symptoms and put forward the idea that hormonal therapies could be used as prophylactic agents against COVID-19.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/complications , COVID-19/complications , Estrogen Antagonists/therapeutic use , Prostatic Neoplasms/complications , Tamoxifen/therapeutic use , Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , COVID-19/metabolism , Drug Discovery , Estrogen Antagonists/pharmacology , Female , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Receptors, Androgen/analysis , Receptors, Androgen/metabolism , Serine Endopeptidases/analysis , Serine Endopeptidases/metabolism , Signal Transduction/drug effects , Tamoxifen/pharmacology , COVID-19 Drug Treatment
11.
Front Pharmacol ; 11: 605185, 2020.
Article in English | MEDLINE | ID: covidwho-993417

ABSTRACT

The impact of the COVID-19 pandemic worldwide has led to a desperate search for effective drugs and vaccines. There are still no approved agents for disease prophylaxis. We thus decided to use a drug repositioning strategy to perform a state-of-the-art review of a promising but controversial drug, hydroxychloroquine (HCQ), in an effort to provide an objective, scientific and methodologically correct overview of its potential prophylactic role. The advantage of using known drugs is that their toxicity profile is well known and there are fewer commercial interests (e.g., expired patents), thus allowing the scientific community to be freer of constraints. The main disadvantage is that the economic resources are almost always insufficient to promote large multinational clinical trials. In the present study, we reviewed the literature and available data on the prophylactic use of HCQ. We also took an in-depth look at all the published clinical data on the drug and examined ongoing clinical trials (CTs) from the most important CT repositories to identify a supporting rationale for HCQ prophylactic use. Our search revealed a substantial amount of preclinical data but a lack of clinical data, highlighting the need to further assess the translational impact of in vitro data in a clinical setting. We identified 77 CTs using a multiplicity of HCQ schedules, which clearly indicates that we are still far from reaching a standard of care. The majority of the CTs (92%) are randomized and 53% are being conducted in a phase 3 or 2/3 setting. The comparator is placebo or control in 55 (77%) of the randomized studies. Forty-eight (62%) CTs expect to enroll up to 1,000 subjects and 50 (71%) plan to recruit healthcare workers (HCW). With regard to drug schedules, 45 (58.5%) CTs have planned a loading dose, while 18 (23.4%) have not; the loading dose is 800 mg in 19 trials (42.2%), 400 mg in 19 (42.2%), 600 mg in 4 (8.9%) and 1,200 mg in 1 (2.2%). Forty trials include at least one daily schedule, while 19 have at least one weekly schedule. Forty-one (53.2%) will have a treatment duration of more than 30 days. Awaiting further developments that can only derive from the results of these prospective randomized CTs, the take-home message of our review is that a correct methodological approach is the key to understanding whether prophylactic HCQ can really represent an effective strategy in preventing COVID-19.

12.
Cell Transplant ; 29: 963689720968749, 2020.
Article in English | MEDLINE | ID: covidwho-894961

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. One open question is whether genetics could influence the severity of symptoms. Considering the limited data on cancer patients, we analyzed public data repositories limited to investigate angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) expressions and genetic variants to identify the basis of individual susceptibility to SARS-CoV-2.Gene expression and variant data were retrieved from Tissue Cancer Genome Atlas, Genotype-Tissue Expression, and gnomAD. Differences in gene expression were tested with Mann-Whitney U-test. Allele frequencies of germline variants were explored in different ethnicities, with a special focus on ACE2 variants located in the binding site to SARS-CoV-2 spike protein.The analysis of ACE2 and TMPRSS2 expressions in healthy tissues showed a higher expression in the age class 20 to 59 years (false discovery rate [FDR] < 0.0001) regardless of gender. ACE2 and TMPRSS2 were more expressed in tumors from males than females (both FDR < 0.0001) and, opposite to the regulation in tissues from healthy individuals, more expressed in elderly patients (FDR = 0.005; FDR < 0.0001, respectively). ACE2 and TMPRSS2 expressions were higher in cancers of elderly patients compared with healthy individuals (FDR < 0.0001). Variants were present at low frequency (range 0% to 3%) and among those with the highest frequency, the variant S19P belongs to the SARS-CoV-2 spike protein binding site and it was exclusively present in Africans with a frequency of 0.2%.The mechanisms of ACE2 and TMPRSS2 regulation could be targeted for preventive and therapeutic purposes in the whole population and especially in cancer patients.Further studies are needed to show a direct correlation of ACE2 and TMPRSS2 expressions in cancer patients and the incidence of COVID-19.


Subject(s)
Coronavirus Infections/pathology , Genetic Predisposition to Disease , Neoplasms/pathology , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Serine Endopeptidases/genetics , Adult , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Binding Sites , Black People/genetics , COVID-19 , Case-Control Studies , Coronavirus Infections/virology , Databases, Genetic , Female , Gene Frequency , Genetic Variation , Humans , Incidence , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/genetics , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
13.
Res Sq ; 2020 Aug 04.
Article in English | MEDLINE | ID: covidwho-725210

ABSTRACT

We describe the establishment and current content of the ImmuneCODE™ database, which includes hundreds of millions of T-cell Receptor (TCR) sequences from over 1,400 subjects exposed to or infected with the SARS-CoV-2 virus, as well as over 135,000 high-confidence SARS-CoV-2-specific TCRs. This database is made freely available, and the data contained in it can be downloaded and analyzed online or offline to assist with the global efforts to understand the immune response to the SARS-CoV-2 virus and develop new interventions.

14.
medRxiv ; 2020 Sep 17.
Article in English | MEDLINE | ID: covidwho-721058

ABSTRACT

T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection. Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides (class II data in a forthcoming study). Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared "public" T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells. Collectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARS-CoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3-7 = 85.1% [95% CI = 79.9-89.7]; Day 8-14 = 94.8% [90.7-98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1-98.3]). These results demonstrate an approach to reliably assess the adaptive immune response both soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points. This blood-based molecular approach to characterizing the cellular immune response has applications in clinical diagnostics as well as in vaccine development and monitoring.

15.
Trials ; 21(1): 689, 2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-690891

ABSTRACT

OBJECTIVES: Hydroxychloroquine has shown to have antiviral activity in vitro against coronaviruses, specifically SARS-CoV-2. It is believed to block virus infection by increasing endosomal pH required for virus cell fusion and glycosylation of viral surface proteins. In addition to its antiviral activity, hydroxychloroquine has an immune-modulating activity that may synergistically enhance its antiviral effect in vivo, making it a potentially promising drug for the prevention and the cure of SARS-CoV-19. However, randomized controlled trials are needed to assess whether it can be used safely to treat COVID-19 patients or to prevent infection. The main objective of the present study is to evaluate the efficacy of hydroxychloroquine for (I) the prevention of COVID-19 or related symptoms in SARS-CoV-2-exposed subjects, such as as household members/contacts of COVID-19 patients and (II) the treatment of early-phase asymptomatic or paucisymptomatic COVID-19 patients. TRIAL DESIGN: This is a controlled, open label, cluster-randomized, superiority trial with parallel group design. Subjects will be randomized either to receive hydroxychloroquine or to observation (2:1). PARTICIPANTS: SARS-CoV-2-exposed subjects, including household members and/or contacts of COVID-19 patients and healthcare professionals (Group 1) or patients with COVID-19 (positive PCR test on a rhinopharyngeal or oropharyngeal swab for SARS-CoV-2), asymptomatic or paucisymptomatic in home situations who are not undergoing treatment with any anti COVID-19 medication (Group 2), will be enrolled. Paucisymptomatic patients are defined as patients with a low number of mild symptoms. All subjects must be aged ≥18 years, male or female, must be willing and able to give informed consent and must not have any contraindications to take hydroxychloroquine (intolerance or previous toxicity for hydroxychloroquine/chloroquine, bradycardia or reduction in heart rhythm with arrhythmia, ischemic heart disease, retinopathy, congestive heart failure with use of diuretics, favism or glucose-6-phosphate dehydrogenase (G6PD) deficiency, diabetes type 1, major comorbidities such as advanced chronic kidney disease or dialysis therapy, known history of ventricular arrhythmia, any oncologic/hematologic malignancy, severe neurological and mental illness, current use of medications with known significant drug-drug interactions, and known prolonged QT syndrome or current use of drugs with known QT prolongation). The study is monocentric and will be conducted at Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS. Subjects will be enrolled from a large epidemic region (North-Central Italy). The Public Health Departments of several Italian regions will collaborate by identifying potentially eligible subjects. INTERVENTION AND COMPARATOR: The participants will be randomized (2:1 randomization) to receive either hydroxychloroquine (Arm A) or to Observation (Arm B). Hydroxychloroquine will be administered with the following schedule: Group1: A loading dose hydroxychloroquine 400 mg twice daily on day 1, followed by a weekly dose of hydroxychloroquine 200 mg twice daily on days 8, 15 and 22, for a total of one month of treatment. Group 2: A loading dose hydroxychloroquine 400 mg twice daily on day 1 followed by 200 mg twice daily for a total of 5-7 days. The comparator in this trial is observation given that currently neither treatment is administered to asymptomatic or paucisymptomatic subjects, nor prophylaxis is available for contacts. Hydroxychloroquine will be shipped to subjects within 24 hours of randomization. Given the extraordinary nature of the COVID-19 pandemic, only telephonic interviews will be carried out and electronic Patient Reported Outcomes (ePRO) completed. During treatment, each subject will be contacted every other day for the first week and weekly thereafter (Group 2) or weekly (Group 1) by a study physician to assess early onset of any COVID-19 symptom or any adverse reaction to hydroxychloroquine and to check subject compliance. Furthermore, all subjects will receive periodic ePROs which may be completed through smartphone or tablets to record drug self-administration and onset of any symptom or adverse event. All subjects will be followed up for a total of 6 months by periodic telephonic interviews and ePROs. MAIN OUTCOMES: The primary endpoint/outcome measure for this trial is: for Group 1, the proportion of subjects who become symptomatic and/or swab-positive in each arm within one month of randomization; for Group 2, the proportion of subjects who become swab-negative in each arm within 14 days of randomization. RANDOMIZATION: All household members and/or contacts of each COVID-19 index case, and the COVID-19 patient himself/herself, fulfilling all inclusion criteria will be grouped into a single cluster and this cluster will be randomized (2:1) to either arm A or arm B. Information on each subject will be recorded in specific data records. Randomization lists will be stratified according to the following factors regarding COVID-19 index cases: 1. COVID-19 risk level on the basis of province of residence (high vs. low/intermediate); 2. Index case is a healthcare professional (yes vs.no) 3. Index case with COVID-19 treatment (yes vs. no) An independent statistician not otherwise involved in the trial will generate the allocation sequence, and COVID-19 response teams will be unaware of the allocation of clusters. Randomization will be performed through an interactive web-based electronic data-capturing database. An Independent Data Monitoring Committee has been established. BLINDING (MASKING): This study is open label. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): For Group 1, a sample size of about 2000 SARS-CoV-2-exposed subjects such as household members and/or contacts of COVID-19 patients will take part in the study. Assuming around 1.5-2.0 asymptomatic household members and/or contacts for each COVID-19 patient, we expect to identify approximately 1000-1300 COVID-19 index cases to be randomized. An interim analysis on efficacy is planned using standard alpha-spending function. For Group 2, sufficient power for primary objective (negative swab within 14 days of randomization) will be reached given a sample size of 300 asymptomatic or paucisymptomatic COVID-19 subjects in home situations not treated for COVID-19 (25%-30% of about 1000-1300 expected index cases). Since up to date reduced evidence about COVID-19 infection epidemiology, the continuous update of diagnostic and therapeutic approaches, the sample size estimation could be updated after a one third of population will be recruited and eventually modified according to a substantial protocol amendment. An interim analysis at 100 enrolled COVID-19 patients is planned. We have planned a Generalized Estimating Equation analysis, which is more efficient than a cluster level analysis, to take advantage of subject-specific covariates. The above reported sample size analysis is therefore to be considered conservative. TRIAL STATUS: The current version of the PROTECT trial protocol is 'Final version, 15 April 2020'. The study started on 9th May 2020. The first patient was enrolled on 14th May 2020. Recruitment is expected to last through September 2020. TRIAL REGISTRATION: The PROTECT trial is registered in the EudraCT database (no. 2020-001501-24) and in ClinicalTrials.gov ( NCT04363827 ), date of registration 24 April 2020. FULL PROTOCOL: The full PROTECT protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interests of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol (Protocol final version, 15th April 2020). The study protocol has been reported in accordance with Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Hydroxychloroquine/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Randomized Controlled Trials as Topic , COVID-19 , Cluster Analysis , Female , Humans , Male , Patient Reported Outcome Measures , SARS-CoV-2 , Telemedicine
SELECTION OF CITATIONS
SEARCH DETAIL